SUPPORTING INFORMATION

Structure-based Design of γ -Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors

 $Xu\ Ran^{\dagger, \ddagger, \$}$, $Yujun\ Zhao^{\ddagger, \$}$, $Liu\ Liu^{\ddagger, \$}$, $Longchuan\ Bai^{\ddagger, \$}$, Chao-Yie $Yang^{\ddagger, \$}$, $Bing\ Zhou^{\ddagger, \$}$, $Jennifer\ L.\ Meagher^\pi$, $Krishnapriya\ Chinnaswamy^\pi$, $Jeanne\ A.\ Stuckey^{\pi_+}$, and $Shaomeng\ Wang^{\dagger, \ddagger, l, \, \$, *}$

Departments of [†]Medicinal Chemistry, [‡]Internal Medicine, [|]Pharmacology, and [†]Biological Chemistry, [‡]Life Sciences Institute, and [§]Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, United States

Contents

1.	Scheme S1. Synthesis of intermediates 25-29.	2
	,	
2.	Figure S1. Chemical structure for fluorecence-tagged compound for FP-based assau	3
3.	Table S1. X-ray Crystallography Data Collection and Refinement Statistics	4

Scheme S1 General synthetic method of five-membered hetereocylic boronate intermediates.

Reaction conditions: (a) EtOH or MeOH/H₂O, reflux; (b) NBS or NIS, DMF, overnight; THF (c) $(Boc)_2O$, DMAP, 0 $^{\circ}C$ to rt; (d) BuLi, THF, -78 $^{\circ}C$.

Figure S1. Chemical structure of Fluorescence-labeled BET inhibitor used in our fluorescence Polarization assays for BDR2-BDR4 BD1 and BD2 domain proteins.

ZBA248

Table S1: X-ray Crystallography Data Collection and Refinement Statistics

Data Collection	BRD4 BD2- compound 18
PDB ID	4Z93
SpaceGroup	P2 ₁ 2 ₁ 2
Unit Cell a, b, c (Å)	51.862, 72.696, 32.115
Wavelength (Å)	1.07820
Resolution (Å) ¹	1.27 (1.29-1.27)
Rsym (%) ²	4.5 (32.6)
$\langle I/sI\rangle^3$	20 (5)
Completeness (%) ⁴	98.9 (96.7)
Redundancy	6.2 (6.1)
Refinement	
Resolution (Å)	1.27
R-Factor (%) ⁵	15.6
Rfree (%) ⁶	18.5
Protein atoms	1776
Water Molecules	119
Unique Reflections	32482
R.m.s.d. ⁷	
Bonds	0.010
Angles	0.98
MolProbity Score	0.50
Clash Score	0
Z-Score ⁸	-0.16
RSCC (%) ⁸	93.8
RSRV (%) ⁸	10.2

Statistics for highest resolution bin of reflections in parentheses.

 $^{^2}R_{sym} = \Sigma_h \Sigma_j \, 1 \, I_{hj} - \langle I_h \rangle \, 1 \, / \Sigma_h \Sigma_j I_{hj}$, where I_{hj} is the intensity of observation j of reflection h and $\langle I_h \rangle$ is the mean intensity for multiply recorded reflections.

³Intensity signal-to-noise ratio.

⁴Completeness of the unique diffraction data.

 $^{^5}$ R-factor = Σ_h I IF $_o$ I – IF $_c$ I I / Σ_h IF $_o$ I, where F $_o$ and F $_c$ are the observed and calculated structure factor amplitudes for reflection h.

 $^{^6}R_{\text{free}}$ is calculated against a 5% random sampling of the reflections that were removed before structure refinement.

⁷Root mean square deviation of bond lengths and bond angles.

⁸Values calculated using the Predeposition Electron-Density Server.